跳转至

AcWing板子

一、基础算法

快速排序算法模板

void quick_sort(int q[], int l, int r) {
    if (l >= r) return;

    int i = l - 1, j = r + 1, x = q[l + r >> 1];
    while (i < j) {
        do i++; while (q[i] < x);
        do j--; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, j), quick_sort(q, j + 1, r);
}

归并排序算法模板

void merge_sort(int q[], int l, int r) {
    if (l >= r) return;

    int mid = l + r >> 1;
    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);

    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (q[i] <= q[j]) tmp[k++] = q[i++];
        else tmp[k++] = q[j++];

    while (i <= mid) tmp[k++] = q[i++];
    while (j <= r) tmp[k++] = q[j++];

    for (i = l, j = 0; i <= r; i++, j++) q[i] = tmp[j];
}

整数二分算法模板

// 检查x是否满足某种性质
bool check(int x) {/* ... */} 

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r) {
    while (l < r) {
        int mid = l + r >> 1;
        // check()判断mid是否满足性质
        if (check(mid)) r = mid;   
        else l = mid + 1;
    }
    return l;
}

// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r) {
    while (l < r) {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

浮点数二分算法模板

// 检查x是否满足某种性质
bool check(double x) {/* ... */}

double bsearch_3(double l, double r) {
    // eps 表示精度,取决于题目对精度的要求
    const double eps = 1e-6;
    while (r - l > eps) {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

高精度加法

// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B) {
    if (A.size() < B.size()) return add(B, A);

    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size(); i++) {
        t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }

    if (t) C.push_back(t);
    return C;
}

高精度减法

// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B) {
    vector<int> C;
    for (int i = 0, t = 0; i < A.size(); i++) {
        t = A[i] - t;
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);
        if (t < 0) t = 1;
        else t = 0;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

高精度乘低精度

// C = A * b, A >= 0, b >= 0
vector<int> mul(vector<int> &A, int b) {
    vector<int> C;

    int t = 0;
    for (int i = 0; i < A.size() || t; i++) {
        if (i < A.size()) t += A[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();

    return C;
}

高精度除以低精度

// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r) {
    vector<int> C;
    r = 0;
    for (int i = A.size() - 1; i >= 0; i--) {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

一维前缀和

S[i] = a[1] + a[2] + ... a[i]

a[l] + ... + a[r] = S[r] - S[l - 1]

二维前缀和

S[i, j] = 第i行j列格子左上部分所有元素的和

以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:

S[x2, y2] - S[x1 - 1, y2] - S[x2, y1 - 1] + S[x1 - 1, y1 - 1]

一维差分

给区间[l, r]中的每个数加上c:B[l] += c, B[r + 1] -= c

二维差分

给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:

  • S[x1, y1] += c
  • S[x2 + 1, y1] -= c
  • S[x1, y2 + 1] -= c
  • S[x2 + 1, y2 + 1] += c

位运算

求n的第k位数字:n >> k & 1

返回n的最后一位1:lowbit(n) = n & -n

双指针算法

for (int i = 0, j = 0; i < n; i ++ ) {
    while (j < i && check(i, j)) j ++ ;

    // 具体问题的逻辑
}
  1. 对于一个序列,用两个指针维护一段区间
  2. 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作

离散化

vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 将所有值排序
alls.erase(unique(alls.begin(), alls.end()), alls.end());   // 去掉重复元素

// 二分求出x对应的离散化的值
// 找到第一个大于等于x的位置
int find(int x) {
    int l = 0, r = alls.size() - 1;
    while (l < r) {
        int mid = l + r >> 1;
        if (alls[mid] >= x) r = mid;
        else l = mid + 1;
    }
    return r + 1; // 映射到1, 2, ...n
}

区间合并

// 将所有存在交集的区间合并
void merge(vector<PII> &segs) {
    vector<PII> res;
    sort(segs.begin(), segs.end());
    int st = -2e9, ed = -2e9;
    for (auto seg : segs)
        if (ed < seg.first) {
            if (st != -2e9) res.push_back({st, ed});
            st = seg.first, ed = seg.second;
        }
        else ed = max(ed, seg.second);
    if (st != -2e9) res.push_back({st, ed});
    segs = res;
}

二、数据结构

单链表

// head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点
int head, e[N], ne[N], idx;

// 初始化
void init() {
    head = -1;
    idx = 0;
}

// 在链表头插入一个数a
void insert(int a) {
    e[idx] = a, ne[idx] = head, head = idx++;
}

// 将头结点删除,需要保证头结点存在
void remove() {
    head = ne[head];
}

双链表

// e[]表示节点的值,l[]表示节点的左指针,r[]表示节点的右指针,idx表示当前用到了哪个节点
int e[N], l[N], r[N], idx;

// 初始化
void init() {
    //0是左端点,1是右端点
    r[0] = 1, l[1] = 0;
    idx = 2;
}

// 在节点a的右边插入一个数x
void insert(int a, int x) {
    e[idx] = x;
    l[idx] = a, r[idx] = r[a];
    l[r[a]] = idx, r[a] = idx++;
}

// 删除节点a
void remove(int a) {
    l[r[a]] = l[a];
    r[l[a]] = r[a];
}

// tt表示栈顶
int stk[N], tt = 0;

// 向栈顶插入一个数
stk[ ++ tt] = x;

// 从栈顶弹出一个数
tt --;

// 栈顶的值
stk[tt];

// 判断栈是否为空,如果 tt > 0,则表示不为空
if (tt > 0)
{

}

普通队列

// hh 表示队头,tt表示队尾
int q[N], hh = 0, tt = -1;

// 向队尾插入一个数
q[++tt] = x;

// 从队头弹出一个数
hh++;

// 队头的值
q[hh];

// 判断队列是否为空,如果 hh <= tt,则表示不为空
if (hh <= tt) {

}

循环队列

// hh 表示队头,tt表示队尾的后一个位置
int q[N], hh = 0, tt = 0;

// 向队尾插入一个数
q[tt ++ ] = x;
if (tt == N) tt = 0;

// 从队头弹出一个数
hh ++ ;
if (hh == N) hh = 0;

// 队头的值
q[hh];

// 判断队列是否为空,如果hh != tt,则表示不为空
if (hh != tt) {

}

单调栈

常见模型:找出每个数左边离它最近的比它大/小的数

int tt = 0;
for (int i = 1; i <= n; i++) {
    while (tt && check(stk[tt], i)) tt--;
    stk[++tt] = i;
}

单调队列

常见模型:找出滑动窗口中的最大值/最小值

int hh = 0, tt = -1;
for (int i = 0; i < n; i++) {
    while (hh <= tt && check_out(q[hh])) hh++;  // 判断队头是否滑出窗口
    while (hh <= tt && check(q[tt], i)) tt--;
    q[++tt] = i;
}

KMP

// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度
// 求模式串的Next数组
for (int i = 2, j = 0; i <= m; i++) {
    while (j && p[i] != p[j + 1]) j = ne[j];
    if (p[i] == p[j + 1]) j++;
    ne[i] = j;
}

// 匹配
for (int i = 1, j = 0; i <= n; i++) {
    while (j && s[i] != p[j + 1]) j = ne[j];
    if (s[i] == p[j + 1]) j++;
    if (j == m) {
        j = ne[j];
        // 匹配成功后的逻辑
    }
}

并查集

朴素并查集

int p[N]; //存储每个点的祖宗节点

// 返回x的祖宗节点
int find(int x) {
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i++) p[i] = i;

// 合并a和b所在的两个集合:
p[find(a)] = find(b);

维护size的并查集

int p[N], size[N];
//p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量

// 返回x的祖宗节点
int find(int x) {
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i++) {
    p[i] = i;
    size[i] = 1;
}

// 合并a和b所在的两个集合:
size[find(b)] += size[find(a)];
p[find(a)] = find(b);

维护到祖宗节点距离的并查集

int p[N], d[N];
//p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离

// 返回x的祖宗节点
int find(int x) {
    if (p[x] != x) {
        int u = find(p[x]);
        d[x] += d[p[x]];
        p[x] = u;
    }
    return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i++) {
    p[i] = i;
    d[i] = 0;
}

// 合并a和b所在的两个集合:
p[find(a)] = find(b);
d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量

Trie树

int son[N][26], cnt[N], idx;
// 0号点既是根节点,又是空节点
// son[][]存储树中每个节点的子节点
// cnt[]存储以每个节点结尾的单词数量

// 插入一个字符串
void insert(char *str) {
int p = 0;
for (int i = 0; str[i]; i++) {
    int u = str[i] - 'a';
    if (!son[p][u]) son[p][u] = ++idx;
    p = son[p][u];
}
cnt[p]++;
}

// 查询字符串出现的次数
int query(char *str) {
int p = 0;
for (int i = 0; str[i]; i++) {
    int u = str[i] - 'a';
    if (!son[p][u]) return 0;
    p = son[p][u];
}
return cnt[p];
}

// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1
// ph[k]存储第k个插入的点在堆中的位置
// hp[k]存储堆中下标是k的点是第几个插入的
int h[N], ph[N], hp[N], size;

// 交换两个点,及其映射关系
void heap_swap(int a, int b) {
    swap(ph[hp[a]], ph[hp[b]]);
    swap(hp[a], hp[b]);
    swap(h[a], h[b]);
}

void down(int u) {
    int t = u;
    if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
    if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
    if (u != t) {
        heap_swap(u, t);
        down(t);
    }
}

void up(int u) {
    while (u / 2 && h[u] < h[u / 2]) {
        heap_swap(u, u / 2);
        u >>= 1;
    }
}

int main() {
    // O(n)建堆
    for (int i = n / 2; i; i--) down(i);
}

一般哈希

拉链法

int h[N], e[N], ne[N], idx;

// 向哈希表中插入一个数
void insert(int x) {
    int k = (x % N + N) % N;
    e[idx] = x;
    ne[idx] = h[k];
    h[k] = idx++;
}

// 在哈希表中查询某个数是否存在
bool find(int x) {
    int k = (x % N + N) % N;
    for (int i = h[k]; i != -1; i = ne[i])
        if (e[i] == x)
            return true;

    return false;
}

开放寻址法

int h[N];

// 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置
int find(int x) {
    int t = (x % N + N) % N;
    while (h[t] != null && h[t] != x) {
        t++;
        if (t == N) t = 0;
    }
    return t;
}

字符串哈希

核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低

小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

typedef unsigned long long ULL;
ULL h[N], p[N];
// h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64

// 初始化
p[0] = 1;
for (int i = 1; i <= n; i++) {
    h[i] = h[i - 1] * P + str[i];
    p[i] = p[i - 1] * P;
}

// 计算子串 str[l ~ r] 的哈希值
ULL get(int l, int r) {
    return h[r] - h[l - 1] * p[r - l + 1];
}

三、C++ STL简介

vector

vector, 变长数组倍增的思想
    size()  返回元素个数
    empty()  返回是否为空
    clear()  清空
    front()/back()
    push_back()/pop_back()
    begin()/end()
    []
    支持比较运算按字典序

pair

pair<int, int>
    first, 第一个元素
    second, 第二个元素
    支持比较运算以first为第一关键字以second为第二关键字字典序

string

string字符串
    size()/length()  返回字符串长度
    empty()
    clear()
    substr(起始下标(子串长度))  返回子串
    c_str()  返回字符串所在字符数组的起始地址

queue

queue, 队列
    size()
    empty()
    push()  向队尾插入一个元素
    front()  返回队头元素
    back()  返回队尾元素
    pop()  弹出队头元素
priority_queue, 优先队列默认是大根堆
    size()
    empty()
    push()  插入一个元素
    top()  返回堆顶元素
    pop()  弹出堆顶元素
    定义成小根堆的方式priority_queue<int, vector<int>, greater<int>> q;

stack

stack, 
    size()
    empty()
    push()  向栈顶插入一个元素
    top()  返回栈顶元素
    pop()  弹出栈顶元素

deque

deque, 双端队列
    size()
    empty()
    clear()
    front()/back()
    push_back()/pop_back()
    push_front()/pop_front()
    begin()/end()
    []

else

set, map, multiset, multimap, 基于平衡二叉树红黑树),动态维护有序序列
    size()
    empty()
    clear()
    begin()/end()
    ++, -- 返回前驱和后继时间复杂度 O(logn)

    set/multiset
        insert()  插入一个数
        find()  查找一个数
        count()  返回某一个数的个数
        erase()
            (1) 输入是一个数x删除所有x   O(k + logn)
            (2) 输入一个迭代器删除这个迭代器
        lower_bound()/upper_bound()
            lower_bound(x)  返回大于等于x的最小的数的迭代器
            upper_bound(x)  返回大于x的最小的数的迭代器
    map/multimap
        insert()  插入的数是一个pair
        erase()  输入的参数是pair或者迭代器
        find()
        []  注意multimap不支持此操作 时间复杂度是 O(logn)
        lower_bound()/upper_bound()

unordered_set, unordered_map, unordered_multiset, unordered_multimap, 哈希表
    和上面类似增删改查的时间复杂度是 O(1)
    不支持 lower_bound()/upper_bound() 迭代器的++--

bitset

bitset, 圧位
    bitset<10000> s;
    ~, &, |, ^
    >>, <<
    ==, !=
    []

    count()  返回有多少个1

    any()  判断是否至少有一个1
    none()  判断是否全为0

    set()  把所有位置成1
    set(k, v)  将第k位变成v
    reset()  把所有位变成0
    flip()  等价于~
    flip(k) 把第k位取反

四、搜索与图论

树与图的存储

树是一种特殊的图,与图的存储方式相同。 对于无向图中的边ab,存储两条有向边a->b, b->a。 因此我们可以只考虑有向图的存储。

(1) 邻接矩阵:g[a][b] 存储边a->b

(2) 邻接表:

// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;

// 添加一条边a->b
void add(int a, int b) {
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

// 初始化
idx = 0;
memset(h, -1, sizeof h);

树与图的遍历

深度优先遍历

int dfs(int u) {
    st[u] = true; // st[u] 表示点u已经被遍历过

    for (int i = h[u]; i != -1; i = ne[i]) {
        int j = e[i];
        if (!st[j]) dfs(j);
    }
}

宽度优先遍历

queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);

while (q.size()) {
    int t = q.front();
    q.pop();

    for (int i = h[t]; i != -1; i = ne[i]) {
        int j = e[i];
        if (!st[j]) {
            st[j] = true; // 表示点j已经被遍历过
            q.push(j);
        }
    }
}

拓扑排序

bool topsort() {
    int hh = 0, tt = -1;

    // d[i] 存储点i的入度
    for (int i = 1; i <= n; i++)
        if (!d[i])
            q[++tt] = i;

    while (hh <= tt) {
        int t = q[hh++];

        for (int i = h[t]; i != -1; i = ne[i]) {
            int j = e[i];
            if (--d[j] == 0)
                q[++tt] = j;
        }
    }

    // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
    return tt == n - 1;
}

朴素dijkstra算法

int g[N][N];  // 存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra() {
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    for (int i = 0; i < n - 1; i++) {
        int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
        for (int j = 1; j <= n; j++)
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        // 用t更新其他点的距离
        for (int j = 1; j <= n; j++)
            dist[j] = min(dist[j], dist[t] + g[t][j]);

        st[t] = true;
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

堆优化版dijkstra

typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra() {
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    priority_queue <PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size()) {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue;
        st[ver] = true;

        for (int i = h[ver]; i != -1; i = ne[i]) {
            int j = e[i];
            if (dist[j] > distance + w[i]) {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

Bellman-Ford算法

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
} edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford() {
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

spfa 算法(队列优化的Bellman-Ford算法)

nt n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa() {
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size()) {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i]) {
            int j = e[i];
            if (dist[j] > dist[t] + w[i]) {
                dist[j] = dist[t] + w[i];
                // 如果队列中已存在j,则不需要将j重复插入
                if (!st[j]) {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

spfa判断图中是否存在负环

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa() {
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue<int> q;
    for (int i = 1; i <= n; i++) {
        q.push(i);
        st[i] = true;
    }

    while (q.size()) {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i]) {
            int j = e[i];
            if (dist[j] > dist[t] + w[i]) {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (cnt[j] >= n) return true;
                if (!st[j]) {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

floyd算法

初始化
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd() {
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

朴素版prim算法

int n;      // n表示点数
int g[N][N];        // 邻接矩阵,存储所有边
int dist[N];        // 存储其他点到当前最小生成树的距离
bool st[N];     // 存储每个点是否已经在生成树中


// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim() {
    memset(dist, 0x3f, sizeof dist);

    int res = 0;
    for (int i = 0; i < n; i++) {
        int t = -1;
        for (int j = 1; j <= n; j++)
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        if (i && dist[t] == INF) return INF;

        if (i) res += dist[t];
        st[t] = true;

        for (int j = 1; j <= n; j++) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}

Kruskal算法

int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组

struct Edge     // 存储边
{
    int a, b, w;

    bool operator<(const Edge &W) const {
        return w < W.w;
    }
} edges[M];

int find(int x)     // 并查集核心操作
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal() {
    sort(edges, edges + m);

    for (int i = 1; i <= n; i++) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;
    for (int i = 0; i < m; i++) {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt++;
        }
    }

    if (cnt < n - 1) return INF;
    return res;
}

染色法判别二分图

int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c) {
    color[u] = c;
    for (int i = h[u]; i != -1; i = ne[i]) {
        int j = e[i];
        if (color[j] == -1) {
            if (!dfs(j, !c)) return false;
        } else if (color[j] == c) return false;
    }

    return true;
}

bool check() {
    memset(color, -1, sizeof color);
    bool flag = true;
    for (int i = 1; i <= n; i++)
        if (color[i] == -1)
            if (!dfs(i, 0)) {
                flag = false;
                break;
            }
    return flag;
}

匈牙利算法

int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x) {
    for (int i = h[x]; i != -1; i = ne[i]) {
        int j = e[i];
        if (!st[j]) {
            st[j] = true;
            if (match[j] == 0 || find(match[j])) {
                match[j] = x;
                return true;
            }
        }
    }
    return false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int main() {
    int res = 0;
    for (int i = 1; i <= n1; i++) {
        memset(st, false, sizeof st);
        if (find(i)) res++;
    }
}

五、数学知识

试除法判定质数

bool is_prime(int x) {
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i++)
        if (x % i == 0)
            return false;
    return true;
}

试除法分解质因数

void divide(int x) {
    for (int i = 2; i <= x / i; i++)
        if (x % i == 0) {
            int s = 0;
            while (x % i == 0) x /= i, s++;
            cout << i << ' ' << s << endl;
        }
    if (x > 1) cout << x << ' ' << 1 << endl;
    cout << endl;
}

朴素筛法求素数

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n) {
    for (int i = 2; i <= n; i++) {
        if (st[i]) continue;
        primes[cnt++] = i;
        for (int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}

线性筛法求素数

int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉

void get_primes(int n) {
    for (int i = 2; i <= n; i++) {
        if (!st[i]) primes[cnt++] = i;
        for (int j = 0; primes[j] <= n / i; j++) {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

试除法求所有约数

vector<int> get_divisors(int x) {
    vector<int> res;
    for (int i = 1; i <= x / i; i++)
        if (x % i == 0) {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

约数个数和约数之和

如果 N = p1^c1 * p2^c2 * ... *pk^ck

约数个数:(c1 + 1) * (c2 + 1) * ... * (ck + 1)

约数之和:(p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)

欧几里得算法

int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}

求欧拉函数

int phi(int x) {
    int res = x;
    for (int i = 2; i <= x / i; i++)
        if (x % i == 0) {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);

    return res;
}

筛法求欧拉函数

int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉


void get_eulers(int n) {
    euler[1] = 1;
    for (int i = 2; i <= n; i++) {
        if (!st[i]) {
            primes[cnt++] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j++) {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0) {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}

快速幂

求 m^k mod p,时间复杂度 O(logk)。

int qmi(int m, int k, int p) {
    int res = 1 % p, t = m;
    while (k) {
        if (k & 1) res = res * t % p;
        t = t * t % p;
        k >>= 1;
    }
    return res;
}

扩展欧几里得算法

// 求x, y,使得ax + by = gcd(a, b)
int exgcd(int a, int b, int &x, int &y) {
    if (!b) {
        x = 1;
        y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= (a / b) * x;
    return d;
}

高斯消元

// a[N][N]是增广矩阵
int gauss() {
    int c, r;
    for (c = 0, r = 0; c < n; c++) {
        int t = r;
        for (int i = r; i < n; i++)
            // 找到绝对值最大的行
            if (fabs(a[i][c]) > fabs(a[t][c]))
                t = i;

        if (fabs(a[t][c]) < eps) continue;
        // 将绝对值最大的行换到最顶端
        for (int i = c; i <= n; i++) swap(a[t][i], a[r][i]);
        // 将当前行的首位变成1
        for (int i = n; i >= c; i--) a[r][i] /= a[r][c];
        // 用当前行将下面所有的列消成0
        for (int i = r + 1; i < n; i++)
            if (fabs(a[i][c]) > eps)
                for (int j = n; j >= c; j--)
                    a[i][j] -= a[r][j] * a[i][c];

        r++;
    }

    if (r < n) {
        for (int i = r; i < n; i++)
            if (fabs(a[i][n]) > eps)
                // 无解
                return 2;
        // 有无穷多组解
        return 1;
    }

    for (int i = n - 1; i >= 0; i--)
        for (int j = i + 1; j < n; j++)
            a[i][n] -= a[i][j] * a[j][n];

    return 0; // 有唯一解
}

递推法求组合数

// c[a][b] 表示从a个苹果中选b个的方案数
for (int i = 0; i < N; i ++ )
    for (int j = 0; j <= i; j ++ )
        if (!j) c[i][j] = 1;
        else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;

通过预处理逆元的方式求组合数

首先预处理出所有阶乘取模的余数fact[N],以及所有阶乘取模的逆元infact[N]

如果取模的数是质数,可以用费马小定理求逆元

// 快速幂模板
int qmi(int a, int k, int p) {
    int res = 1;
    while (k) {
        if (k & 1) res = (LL) res * a % p;
        a = (LL) a * a % p;
        k >>= 1;
    }
    return res;
}

// 预处理阶乘的余数和阶乘逆元的余数
int main() {
    fact[0] = infact[0] = 1;
    for (int i = 1; i < N; i++) {
        fact[i] = (LL) fact[i - 1] * i % mod;
        infact[i] = (LL) infact[i - 1] * qmi(i, mod - 2, mod) % mod;
    }
}

Lucas定理

若p是质数,则对于任意整数 1 <= m <= n,有:

C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)

// 快速幂模板
int qmi(int a, int k, int p) {
    int res = 1 % p;
    while (k) {
        if (k & 1) res = (LL) res * a % p;
        a = (LL) a * a % p;
        k >>= 1;
    }
    return res;
}

// 通过定理求组合数C(a, b)
int C(int a, int b, int p) {
    if (a < b) return 0;
    // x是分子,y是分母
    LL x = 1, y = 1;
    for (int i = a, j = 1; j <= b; i--, j++) {
        x = (LL) x * i % p;
        y = (LL) y * j % p;
    }

    return x * (LL) qmi(y, p - 2, p) % p;
}

int lucas(LL a, LL b, int p) {
    if (a < p && b < p) return C(a, b, p);
    return (LL) C(a % p, b % p, p) * lucas(a / p, b / p, p) % p;
}

分解质因数法求组合数

当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用: 1. 筛法求出范围内的所有质数 2. 通过 C(a, b) = a! / b! / (a - b)!这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ... 3. 用高精度乘法将所有质因子相乘

int primes[N], cnt;     // 存储所有质数
int sum[N];     // 存储每个质数的次数
bool st[N];     // 存储每个数是否已被筛掉

// 线性筛法求素数
void get_primes(int n) {
    for (int i = 2; i <= n; i++) {
        if (!st[i]) primes[cnt++] = i;
        for (int j = 0; primes[j] <= n / i; j++) {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

// 求n!中的次数
int get(int n, int p) {
    int res = 0;
    while (n) {
        res += n / p;
        n /= p;
    }
    return res;
}

// 高精度乘低精度模板
vector<int> mul(vector<int> a, int b) {
    vector<int> c;
    int t = 0;
    for (int i = 0; i < a.size(); i++) {
        t += a[i] * b;
        c.push_back(t % 10);
        t /= 10;
    }

    while (t) {
        c.push_back(t % 10);
        t /= 10;
    }

    return c;
}

int main() {
    // 预处理范围内的所有质数
    get_primes(a);
    // 求每个质因数的次数
    for (int i = 0; i < cnt; i++) {
        int p = primes[i];
        sum[i] = get(a, p) - get(b, p) - get(a - b, p);
    }

    vector<int> res;
    res.push_back(1);
    // 用高精度乘法将所有质因子相乘
    for (int i = 0; i < cnt; i++)
        for (int j = 0; j < sum[i]; j++)
            res = mul(res, primes[i]);
}

卡特兰数

给定n个0和n个1,它们按照某种顺序排成长度为2n的序列,

满足任意前缀中0的个数都不少于1的个数的序列的数量为:Cat(n) = C(2n, n) / (n + 1)

NIM游戏

给定N堆物品,第i堆物品有Ai个。两名玩家轮流行动,每次可以任选一堆,取走任意多个物品,可把一堆取光,但不能不取。取走最后一件物品者获胜。两人都采取最优策略,问先手是否必胜。

我们把这种游戏称为NIM博弈。把游戏过程中面临的状态称为局面。整局游戏第一个行动的称为先手,第二个行动的称为后手。若在某一局面下无论采取何种行动,都会输掉游戏,则称该局面必败。

所谓采取最优策略是指,若在某一局面下存在某种行动,使得行动后对面面临必败局面,则优先采取该行动。同时,这样的局面被称为必胜。我们讨论的博弈问题一般都只考虑理想情况,即两人均无失误,都采取最优策略行动时游戏的结果。

NIM博弈不存在平局,只有先手必胜和先手必败两种情况。

定理: NIM博弈先手必胜,当且仅当 A1 ^ A2 ^ … ^ An != 0

公平组合游戏ICG

若一个游戏满足:

  1. 由两名玩家交替行动;
  2. 在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关;
  3. 不能行动的玩家判负;

则称该游戏为一个公平组合游戏。

NIM博弈属于公平组合游戏,但城建的棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不满足条件2和条件3。

有向图游戏

给定一个有向无环图,图中有一个唯一的起点,在起点上放有一枚棋子。两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。该游戏被称为有向图游戏。

任何一个公平组合游戏都可以转化为有向图游戏。具体方法是,把每个局面看成图中的一个节点,并且从每个局面向沿着合法行动能够到达的下一个局面连有向边。

Mex运算

设S表示一个非负整数集合。定义mex(S)为求出不属于集合S的最小非负整数的运算,即: mex(S) = min{x}, x属于自然数,且x不属于S

SG函数

在有向图游戏中,对于每个节点x,设从x出发共有k条有向边,分别到达节点y1, y2, …, yk,定义SG(x)为x的后继节点y1, y2, …, yk 的SG函数值构成的集合再执行mex(S)运算的结果,即:SG(x) = mex({SG(y1), SG(y2), …, SG(yk)})

特别地,整个有向图游戏G的SG函数值被定义为有向图游戏起点s的SG函数值,即SG(G) = SG(s)。

有向图游戏的和

设G1, G2, …, Gm 是m个有向图游戏。定义有向图游戏G,它的行动规则是任选某个有向图游戏Gi,并在Gi上行动一步。G被称为有向图游戏G1, G2, …, Gm的和。

有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和,即: SG(G) = SG(G1) ^ SG(G2) ^ … ^ SG(Gm)

定理

有向图游戏的某个局面必胜,当且仅当该局面对应节点的SG函数值大于0。 有向图游戏的某个局面必败,当且仅当该局面对应节点的SG函数值等于0。